A Strong Law for the Minkowski Polytope of a Sample

نویسندگان

  • Marco Bonetti
  • Richard A. Vitale
چکیده

Using the existence theorem of Minkowski, we consider the mapping of a data set in IR d into a convex body called the Minkowski polytope. Elsewhere the rst author has treated this as a data analytic tool. Here we show that the MP obeys a strong law in the sense of converging in the Hausdorr metric with increasing sample size to a convex body associated with the population distribution.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Problems from CGCS

Most of these problems were presented at the conference on Combinatorics, Geometry and Computer Science, held at CIRM, Luminy, 2-4 May 2007. I have added one problem on a similar theme after the meeting. The problems have been arranged so that those with similar themes occur together as far as possible. 1. Nearly round polytopes Communicated by Komei Fukuda. We call a polytope centered if it co...

متن کامل

Absolute Irreducibility of Bivariate Polynomials via Polytope Method

For any field F, a polynomial f ∈ F [x1, x2, . . . , xk] can be associated with a polytope, called its Newton polytope. If the polynomial f has integrally indecomposable Newton polytope, in the sense of Minkowski sum, then it is absolutely irreducible over F, i.e., irreducible over every algebraic extension of F.We present some results giving new integrally indecomposable classes of polygons. C...

متن کامل

Decomposing the Secondary Cayley Polytope

The vertices of the secondary polytope of a point connguration correspond to its regular triangulations. The Cayley trick links triangulations of one point connguration, called the Cayley polytope, to the ne mixed subdivisions of a tuple of point conngurations. In this paper we investigate the secondary polytope of this Cayley polytope. Its vertices correspond to all regular mixed subdivisions ...

متن کامل

Matroid Polytopes and their Volumes

We express the matroid polytope PM of a matroid M as a signed Minkowski sum of simplices, and obtain a formula for the volume of PM . This gives a combinatorial expression for the degree of an arbitrary torus orbit closure in the Grassmannian Grk,n. We then derive analogous results for the independent set polytope and the associated flag matroid polytope of M . Our proofs are based on a natural...

متن کامل

Minkowski addition of convex polytopes

This note summarizes recent results from computational geometry which determine complexity of computing Minkowski sum of k convex polytopes in R, which are represented either in terms of facets or in terms of vertices. In particular, it is pointed out for which cases there exists an algorithm which runs in polynomial time. The note is based on papers of Gritzmann and Sturmfels [6] and Komei Fuk...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007